Species of Structures: Type-Theoretical Development
DOI:
https://doi.org/10.47850/RL.2025.6.3.40-58Keywords:
type theory, conceptual design, species of structures, Bourbaki, NikanorovAbstract
Methodology of conceptual design (S. P. Nikanorov et al) is based on the theory of species of structures by N. Bourbaki. It uses classical set theory and predicate logic. Meanwhile, various proof assistants built on intuitionistic type
theory (Coq, Agda, Lean and others) and possessing great capabilities in computation, proof checking etc. became successful recently in the area of mathematics. Combining the approaches of species of structures and type theory may be instrumental for both. The article presents a formalization of the theory of species of structures in terms of type theory (Cubucal Agda, a variant of homotopy type theory). General notion of species of structure, steps, M-graph, as well as operations on steps terms and species of structures are examined. The formalization leads to two conclusions: 1) in spite of differences in philosophical foundations and in the utilized concepts of sets both approaches have similar formal structure and are connected through carrying and uncurrying; 2) theory of species of structures may serve as a metatheory to type theory. Both approaches can be considered complimentary. While the former describes the general architecture of theories, theirs interaction and genesis, the latter brings in computational and proof capabilities.
References
Бурбаки, Н. (1965). Теория множеств. М.: Мир. 455 с.
Bourbaki, N. (1965). Set Theory. Moscow. 455 p.
Кононенко, А. А., Кучкаров, 3. А., Никаноров, С. П., Никитина, Н. К. (2008). Технология концептуального проектирования. Никаноров, С. П. (ред.). М.: Концепт. 580 с.
Kononenko, A. A., Kouchkarov, Z. A., Nikanorov, S. P., Nikitina, N. K. (2008). Technology of Conceptual Design. Nikanorov, S. P. (ed.). Moscow. 580 p.
Никаноров, С. (2013). Введение в аппарат ступеней множеств. М.: Концепт. 350 с.
Nikanorov, S. P. (2013). Introduction to the Apparatus of Set Levels. Moscow. 350 p.
Пономарёв, И. Н. (2007). Введение в математическую логику и роды структур: Учебное пособие. М.: МФТИ. 244 с.
Ponomarev, I. N. (2007). Introduction to Mathematical Logic and Species of Structures: Textbook. Moscow. 244 p.
Erwig, M. (2001). Inductive graphs and functional graph algorithms. Journal of Functional Programming. Vol. 11. No. 5. Pp. 467-492.
Martin-Löf, P. (1984). An Intuitionistic Type Theory. Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980. Napoli. Bibliopolis. 91 p.
Martin-Löf, P. (1987). Truth of a Proposition, Evidence of a Judgement, Validity of a Proof. Synthese. Vol. 73. Pp. 407-420. DOI: 10.1007/BF00484985.
Univalent Foundations Program (2013). Homotopy Type Theory. Univalent Foundations of Mathematics. Institute for Advanced Study. 589 p. Available at: http://homotopytypetheory.org/book.
Vezzosi, A., Mörtberg, A., Abel, A. (2021). Cubical Agda: A dependently typed programming language with univalence and higher inductive types. Journal of Functional Programming. Vol. 31. P. e8. DOI: 10.1017/S0956796821000034.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://oc.philosophy.nsc.ru/remote.php/webdav/%D0%94%D0%BE%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%20%D1%81%20%D0%B0%D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%BC%20RL-%D0%BF%D1%80%D0%B0%D0%B2.doc