Priest on Set-Theoretic Paradoxes
DOI:
https://doi.org/10.47850/RL.2024.5.3.5-12Keywords:
set theoretic paradoxes, metalanguage, metatheory, PriestAbstract
Two set-theoretic paradoxes in Priest’s interpretation are considered, viz. Burali-Forti’s paradox and Koenig’s one. It is argued that Koenig’s paradox, strictly speaking, is not a set-theoretic one because it is based on some metatheoretic ideas, and is formulated in metalanguage. Priest holds that Burali-Forti’s paradox is not fully eliminated even in axiomatic set theories and that it can be seen when set theories are interpreted. In the paper, I show that this claim is not sufficiently grounded. Moreover, it is shown that even if this claim is true, it is based on some metathreoretic ideas and formulated in metalanguage (as well as Koenig’s paradox).
References
Андрушкевич, А. Г. (2023). Действительно ли необходим запрет на самореференцию? Эпистемология и философия науки. Т. 60. № 3. С. 61-67. DOI: 10.5840/eps202360341.
Andrushkevich, A. G. (2023). Is the Ban of Self-Reference Really Necessary? Epistemology & Philosophy of Science. Vol. 60. No. 3. Pp. 61-67. DOI: 10.5840/eps202360341. (In Russ.)
Ладов, В. А. (2023a). О принципе единого решения парадоксов. Эпистемология и философия науки. Т. 60. № 3. С. 17-30. DOI: 10.5840/eps202360336.
Ladov, V. A. (2023a). On the Principle of Uniform Solution to Paradoxes. Epistemology & Philosophy of Science. Vol. 60. No. 3. Pp. 17-30. DOI: 10.5840/eps202360336. (In Russ.)
Ладов, В. А. (2023b). О парадоксах: ответ оппонентам. Эпистемология и философия науки. Т. 60. № 3. С. 68-76. DOI: 10.5840/eps202360342.
Ladov, V. A. (2023b). On Paradoxes. Reply to Critics. Epistemology & Philosophy of Science. Vol. 60. No. 3. Pp. 68-76. DOI: 10.5840/eps202360342. (In Russ.)
Нехаев, А. В. (2023). Что значит быть лысым и лжецом: новая опция унифицированного подхода к парадоксам. Эпистемология и философия науки. Т. 60. № 3. С. 48-54. DOI: 10.5840/eps202360339.
Nekhaev, A. V. (2023). What Does it Mean to Be Bald and a Liar? A New Option for a Unified Approach to Paradoxes. Epistemology & Philosophy of Science. Vol. 60. No. 3. Pp. 48 54. DOI: 10.5840/eps202360339. (In Russ.)
Олейник, П. И. (2023). О роли существования парадоксов в программе философии математики неологицизма. Эпистемология и философия науки. Т. 60. № 3. С. 55-60. DOI: 10.5840/eps202360340.
Oleinik, P. I. (2023). On the Role of the Existence of Paradoxes in the Program of the Philosophy of Mathematics of Neologicism. Epistemology & Philosophy of Science. Vol. 60. No. 3. Pp. 55-60. DOI: 10.5840/eps202360340. (In Russ.)
Прист, Г. (2022). За пределами мысли. Пер. с англ. В. В. Целищева. М.: Канон+.
Priest, G. (2022). Beyond the Limits of Thought. Tselishchev, V. V. (transl.). Moscow. (In Russ.)
Суровцев, В. А. (2023). Б. Рассел, Г. Прист и принцип единого решения логико-семантических парадоксов. Эпистемология и философия науки. Т. 60. № 3. С. 38-47. DOI: 10.5840/eps202360338.
Surovtsev, V. A. (2023). B. Russell, G. Priest and the Principle of Uniform Solution to Logical and Semantical Paradoxes. Epistemology & Philosophy of Science. Vol. 60. No. 3. Pp. 39 47. DOI: 10.5840/eps202360338. (In Russ.)
Целищев, В. В. (2023). Поиски единообразного решения парадоксов: иллюзия простоты. Эпистемология и философия науки. Т. 60. № 3. С. 31-38. DOI: 10.5840/eps202360337.
Tselishchev, V. V. (2023). The Search for a Uniform Solution to Paradoxes: the Illusion of Simplicity. Epistemology & Philosophy of Science. Vol. 60. No. 3. Pp. 31-38. DOI: 10.5840/eps202360337. (In Russ.)
Adamson, I. (1998). A Set Theory Workbook. Boston, Basel, Berlin. Birkhäuser.
Priest, G. (1995). Beyond the Limits of Thought. Cambridge. Cambridge University Press.
Priest, G. (2008). An Introduction to Non-Classical Logic. From If to Is. Cambridge. Cambridge University Press.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://oc.philosophy.nsc.ru/remote.php/webdav/%D0%94%D0%BE%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%20%D1%81%20%D0%B0%D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%BC%20RL-%D0%BF%D1%80%D0%B0%D0%B2.doc