This is an outdated version published on 2024-03-24. Read the most recent version.

Three-dimensional Semantics of Cognitive Terms as the Basis for Artificial Intelligence Research

Authors

  • Andrey Alekseev RUDN University, State Academic University of Humanities (Moscow), State Academic University of Humanities (Moscow)
  • Ekaterina Ekaterina State Academic University of Humanities (Moscow)

DOI:

https://doi.org/10.47850/RL.2024.5.1.5-15

Keywords:

three-dimensional semantics, possible worlds, Korsakov-Turing machine

Abstract

The article discusses various options for constructing three-dimensional (3D) semantics of a language for describing interdisciplinary relations by increasing the complexity of semiotic complexes that ensure coordination of various disciplines. The most complex is the three-dimensional semantics of floating worlds, which uses a two-dimensional framework connecting at least two different disciplines for interdisciplinary coordination. The third dimension for this framework is given by the concept of computability. Computability is interpreted in a symbolic-connectionist format combining the principles of the Turing machine and the Korsakov machine. On the other hand, “computability” is understood as the establishment of a relation of reachability between logically possible worlds, where in each possible world a special discipline is “hidden”. Three forms of interdisciplinary coordination are shown: absolute – the relation of the reachability of possible worlds is carried out in the context of S. Kripke’s theory; relative – a modification of this theory by J. Hintikka and reflexive coordination is used, which is illustrated by the work of the Korsakov machine. It is shown that the three-dimensional semantics of cognitive terms, in addition to the methodological role of organizing interdisciplinary coordination in the construction of AI systems, has direct practical implications in the development of the concept of the metaverse.

Author Biographies

Andrey Alekseev, RUDN University, State Academic University of Humanities (Moscow), State Academic University of Humanities (Moscow)

Doctor of Philosophical Sciences, Professor of the Faculty of Philosophy of the State Academic University for the Humanities Professor of the Engineering Academy of the RUDN University

Ekaterina Ekaterina, State Academic University of Humanities (Moscow)

Candidate of Philosophical Sciences, Deputy dean for Educational and Methodological Work, Associate Professor of the Department of Epistemology and Logic of the Faculty of Philosophy of the State Academic University for the Humanities

References

Алексеев, А. Ю. (2013а). Объемная (3d) интенсиональная семантика словаря искусственного общества. [Электронный ресурс]. Искусственные общества. T. 8. Вып. 1-4. URL: https://artsoc.jes.su/s207751800000038-0-2 (дата обращения: 17.03.2024).

Alekseev, A. Yu. (2013а). Volumetric (3d) intensional semantics of the artificial society dictionary. [Online]. Artificial societies. Vol. 8. Iss. 1-4. Available at: https://artsoc.jes.su/s207751800000038-0-2 (Accessed: 17.03.2024). (In Russ.)

Алексеев, А. Ю. (2013б). Протонейрокомпьютер Корсакова. Нейрокомпьютеры: разработка, применение. № 7. С. 6-17.

Alekseev, A. Yu. (2013b). Korsakov’s protoneurocomputer. Neurocomputers: development, application. No. 7. Pp. 6-17. (In Russ.)

Алексеев, А. Ю. (2016). Мемристоры и ... философия. Биомедицинская радиоэлектроника. № 4. С. 10-11.

Alekseev, A. Yu. (2016). Memristors and ... philosophy. Biomedical radioelectronics. No. 4. Pp. 10-11. (In Russ.)

Алексеев, А. Ю., Воинов, Е. М. (2016). Применение нейрокомпьютеров в религиоведении. Нейрокомпьютеры: разработка и применение. № 5. С. 8-11.

Alekseev, A. Yu., Voinov, E. M. (2016). Application of neurocomputers in religious studies. Neurocomputers: development and application. No. 5. Pp. 8-11. (In Russ.)

Вартофский, М. (1988). Модели. Репрезентация и научное понимание. М.: Прогресс.

Wartofsky, M. (1988). Models. Representation and scientific understanding. Moscow. (In Russ.)

Искусственный интеллект. В 3 кн. (1990). Кн. 2. Модели и методы: справочник. Под ред. Д. А. Поспелова. М.: Радио и связь.

Artificial Intelligence. In 3 books. (1990). Pospelov, D. A. (ed.). Book 2. Models and Methods. Handbook. Moscow. (In Russ.)

Крипке, С. А. (1974). Семантический анализ модальной логики. I. Нормальные модальные исчисления высказываний. Пер. А. А. Мучника. Р. Фейс. Модальная логика. Под ред. Г. Е. Минца. М.: Наука. С. 254-303.

Kripke, S. A. (1974). Semantic analysis of modal logic. I. Normal modal propositional calculus. Muchnik, A. A. (transl.). In R. Face. Modal logic. Mints, G. E. (ed.). Moscow. Pp. 254-303. (In Russ.)

Нерсесянц, В. С. (2005). Философия права: учебник для вузов. М.: Норма.

Nersesyants, V. S. (2005). Philosophy of Law. Textbook for Universities. Moscow. (In Russ.)

Серль, Дж. (2006). Разумы, мозги, программы. Тест Тьюринга. Роботы. Зомби. Под ред. А. Ю. Алексеева. М.: МИЭМ. С. 6-27.

Searle, J. (2006). Minds, Brains, Programs. In Alekseev, A. Yu. (ed.) The Turing Test. Robots. Zombie. Moscow. Pp. 6-27. (In Russ.)

Тейз, А., Грибомон, П., Луи, Ж., Снийерс, Д., Водон, П., Гоше, П., Грегуар, Э., Санчес, Э., Дельсарт, Ф. (1990). Логический подход к искусственному интеллекту: от классической логики к логическому программированию. М.: Мир.

Tase, A., Gribomon, P., Louis, J., Snyers, D., Wodon, P., Gochet, P., Gregoire, E., Sanchez, E., Delsarte, F. (1990). A logical approach to artificial intelligence. From classical logic to logic programming. Moscow. (In Russ.)

Финн, В. К. (2023). Искусственный интеллект: Методология, применения, философия. М.: URSS.

Finn, W. K. (2023). Artificial Intelligence: Methodology, Applications, Philosophy. Moscow. (In Russ.)

Хинтикка, Я. (1980). Логико-эпистемологические исследования. (Серия: Логика и методология науки). М.: Прогресс.

Hintikka, Ya. (1980). Logical-epistemological studies. (Series: Logic and Methodology of Science). Moscow. (In Russ.)

Шрейдер, Ю. А., Шаров, А. А. (1982). Системы и модели. М.: Радио и связь.

Schrader, Yu. A., Sharov, A. A. (1982). Systems and Models. Moscow. (In Russ.)

Sketch of the Analytical Engine. Invented by Charles Babbage. By L. F. Menabrea of Turin, Officer of the Military Engineers. From the Bibliothèque Universelle de Genève. October 1842. No. 82. With notes upon the Memoir by the Translator Ada Augusta, Countess of Lovelace. [Online]. The Analytical Engine. Table of Contents. Sketch of the Analytical Engine. Available at: https://www.fourmilab.ch/babbage/contents.html (Accessed: 17.03.2024)

Chalmers, D. (2006). Two-Dimensional Semantics [Online]. In Lepore, E., Smith, B. (eds.) Oxford Handbook of Philosophy of Language. Oxford. Oxford University Press. Pp. 575-606. Available at: http://consc.net/papers/twodim.pdf (Accessed: 17.03.2024).

Published

2024-03-24

Versions

How to Cite

Alekseev А. Ю., & Ekaterina Е. А. (2024). Three-dimensional Semantics of Cognitive Terms as the Basis for Artificial Intelligence Research. Respublica Literaria, 5(1), 5–15. https://doi.org/10.47850/RL.2024.5.1.5-15