Goedel's Incomplete Theorem: Does it Say Something about the Incompleteness of Math

Authors

  • Sergey Katrechko State Academic University of the Humanities (Moscow)

DOI:

https://doi.org/10.47850/RL.2023.4.4.82-87

Keywords:

Goedel's Incomplete Theorem: Does it Say Something about the Incompleteness of Math

Abstract

The report will propose some methodological approach (“method of eliminating monsters”) going back to Lakatos (“Proof and refutation”) to the analysis of Godel’s theorem, which shows that despite its mathematical correctness, Godel’s theorem is not applicable to mathematics (recursive arithmetic), since the Gödel expression is not a formula, but a formulaoid (Yesenin-Volpin), or a mathematical “monster” that must be eliminated from the field (language) of mathematics. This makes it possible to “remove” Godel's thesis about the incompleteness of mathematics, although it does not cancel the task of positively proving its completeness.

Author Biography

Sergey Katrechko, State Academic University of the Humanities (Moscow)

Candidate of Philosophical Sciences, Associative Professor, editor–in–chief “Studies in Transcendental Philosophy”, Associate Professor of Faculty of Philosophy

References

Беклемишев, Л. Д. (2010). Теоремы Геделя о неполноте и границы их применимости. Успехи математических наук. Т. 65. Вып. 5 (395). С. 61-106.

Beklemishev, L. D. (2010). Gödel's theorems on incompleteness and the limits of their applicability. Russian Mathematical Surveys. Vol. 65. Iss. 5 (395). pp. 61-106. (In Russ.)

Бессонов, А. В. (2020). Еще раз о неверных истолкованиях второй теоремы Геделя о неполноте. Сибирский философский журнал. Т. 18. № 3. С. 132-143.

Bessonov, A. V. (2020). Once again about Misinterpretations of Gödel’s second Theorem on Incompleteness. Siberian Journal of Philosophy. Vol. 18. no. 3 pp. 132-143. (In Russ.)

Есенин-Вольпин, А. С. (1995). Формулы или формулоиды. XI международная конференция «Логика, методология, философия науки». Москва-Обнинск. Т. 1. С. 29-32.

Yesenin-Volpin, A. S. (1995). Formulas or Formulaoids. In XI International Conference “Logic, Methodology, Philosophy of Science”. Moscow-Obninsk. Vol. 1. pp. 29-32. (In Russ.)

Есенин-Вольпин, А. С. (1996). Об антитрадиционной (ультра-интуиционистской) программе оснований математики и естественнонаучном мышлении. Вопросы философии. № 8. С. 100-136.

Yesenin-Volpin, A. S. (1996). On the Anti-traditional (ultra-intuitionistic) Program of the Foundations of Mathematics and Natural Science Thinking. Questions of Philosophy. no. 8. pp. 100 136. (In Russ.)

Лакатос, И. (1967). Доказательства и опровержения (как доказываются теоремы). М.: Наука.

Lakatos, I. (1967). Proofs and Refutations (how theorems are proven). Moscow. (In Russ.)

Подниекс, К. М. (1992). Вокруг теоремы Геделя. Рига: Зинатне.

Podnieks, K. M. (1992). Around Gödel’s theorem. Riga. (In Russ.)

Успенский, В. А. (2007). Теорема Геделя о неполноте и четыре дороги, ведущие к ней [Электронный ресурс]. VII Летняя школа «Современная математика» (Дубна, 19-30 июля 2007 г.). URL: https://www.mathnet.ru/PresentFiles/122/122_1.pdf; видео: https://forallxyz.net/a-84 (дата обращения: 20.10.2023).

Uspensky, V. A. (2007). Gödel's theorem on incompleteness and four roads leading to it [Online]. In VII Summer School “Modern Mathematics” (Dubna, July 19-30, 2007). Available at: https://www.mathnet.ru/PresentFiles/122/122_1.pdf; video: https://forallxyz.net/a-84 (Accessed: 20 October 2023). (In Russ.)

Feferman, S. (1996). Godel's Program for new Axioms: Why, Where, How and What? In Hajek, P. (ed.). Gödel '96. Logical Foundations of Mathematics, Computer Science and Physics – Kurt Gödel's Legacy. Vol. 6. Lecture Notes in Logic. Berlin. Springer-Verlag. pp. 3-22.

Feferman, S. (2006). The Impact of Gödel’s Incompleteness Theorems on Mathematics. Notices of the American Mathematical Society. Vol. 53. no. 4. pp. 434-439.

Friedman, H. (1975). Some Systems of Second Order Arithmetic and Their Use. In Proceedings of the 1974 International Congress of Mathematicians. Vol. 1. pp. 235-242.

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. In Monatshefte für Mathematik und Physik. Bd. 38(1). pp. 173-198.

Gödel, K. (1958). Über Eine Bisher Noch nicht Benutzte Erweiterung des Finiten Standpunktes. Dialectica. Vol. 12. Iss. 3-4. pp. 280-287. DOI: https://doi.org/10.1111/j.1746-8361.1958.tb01464.x

Gödel, K. (1986). On Formally Undecidable Propositions of Principia Mathematica and Related Systems I. In S. Feferman, J. R. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay, J. van Heijenoort (eds.). Kurt Gödel. Collected Works. Vol. 1. New York. pp. 145-195.

Reverse mathematics. [Online]. Wikipedia. Available at: https://en.wikipedia.org/wiki/

Reverse_mathematics (Accessed: 20 October 2023).

Simpson, St. G. (2009). Subsystems of Second Order Arithmetic. (Perspectives in Logic). 2nd ed. Cambridge University Press.

Published

2023-12-13

How to Cite

Katrechko С. Л. (2023). Goedel’s Incomplete Theorem: Does it Say Something about the Incompleteness of Math. Respublica Literaria, 4(4), 82–87. https://doi.org/10.47850/RL.2023.4.4.82-87

Issue

Section

CONFERENCE MATERIALS